

LA-UR-21-25976

Approved for public release; distribution is unlimited.

Title: Changing climate and melting ice: perspectives from field work and

climate modeling

Author(s): Begeman, Carolyn Branecky

Intended for: Outreach presentation to American Association of University Women,

Santa Fe

Issued: 2021-06-24

Changing climate and melting ice: perspectives from field work and climate modeling

Carolyn Branecky Begeman, Los Alamos National Laboratory

The last century has seen marked increases in global temperature

with a wide range of impacts

Miami Herald

IPCC AR5

Earth System Modeling: a way to understand and "predict" climate impacts

Land

Earth System Modeling: DOE's science focus areas

Water Cycle

How does the interaction of humans and the physical environment determine water availability and water cycle extremes?

Biogeochemistry

What is the impact of biogeochemistry changes on energy-sector decisions? For example, land cover changes and ocean acidification

Cryosphere Systems

How will the cryosphere respond to climate changes and contribute to sea level rise and increased coastal vulnerability?

How much sea level rise can we expect?

Emissions continue to increase

Emissions start declining in 2020

Ice sheets could be major contributors to sea level rise 6 m in Greenland 58 m in Antarctica

Both Greenland and Antarctica are losing ice

It matters which ice sheet the water comes from

1 mm of global sea-level rise from

Ice sheets 101

Snowfall

Ice flow into the ocean

Ice sheets 101

Ice flow into the ocean

Ice sheets 101

When enough icebergs calve, the ice sheet flows faster

When ice shelves thin, the ice sheet flows faster

Thinning mostly happens by melting from below

The WISSARD project: drill below Ross Ice Shelf

Slow melting due to cold ocean water and slow currents

Earth System Modeling: a way to understand and "predict" climate impacts

Land

My latest work: modeling interactions between ice sheets and the Earth system

 E3SM recently added the capability of simulating ocean circulation in ice-shelf cavities and computing ice-shelf melt rates¹

- High resolution ocean modeling in ice shelf settings to learn more about how sensitive ice melting is to temperature
- Sophisticated gridding techniques to enable the ice-shelf ocean cavity to evolve as icebergs calve and the coastline retreats

Thank you

Office of Science

